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Abstract —Electric- and magnetic-field patterns for five of the lowest

resonant modes in cyfindricaf dielectic resonators are dkplayed in various

planes of intersection. The computational procedure is based Ori a methnrf-

of-moments solution of the surface integraf equation for bodies of revolu-

tion. Improvement of the numericaf stability through the normssfization of

the matrix is discussed, and an afgorithnr for the evahration of the modal

field components is described.

I. INTRODUCTION

T HE resonant frequencies and the Q factors of various

modes in isolated dielectric resonators can be accu-

rately computed by using the surface integral equation

formulation for bodies of revolution as described in [1]. In
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this paper, we present results for the computed field distri-

butions of several modes of an isolated resonator which

were obtained by applying this formulation. In the first

section of the paper, a normalization procedure used in [1]

is described. Numerical implementation of the integral

equation approach may lead to numerical instabilities when

higher order inodes am studied if the moment matrix is not

adequately normalized. It is shown that a straightforward

normalization can significantly improve the condition

number of the matrix [2], and consequently remove or

reduce the numerical difficulties.

Traditional applications of the method of moments to

problems involting perfectly conducting bodies have been

either an ~-field or an H-field integral equation [3], [4]. In

either case, all the components of the unknown column

vector are automatically expressed in the same physical

units for most structures so that the normalization pf the.

matrix is not an issue. The integral equation utilized here, ‘

i 0018-9480/84/1200-1609$01.00 @198~ IEEE



1610 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. Mrr-32, NO. 12, DECEMBER 1984

however, is of the combined-field type [5], [6], in which

both the electric and the magnetic equivalent currents

appear as unknowns. In such situations, and when differ-

ent types of basis functions are used for different compo-

nents of current, the matrix should be normalized in such a

way that all the components of the column vectors on both

sides of the matrix equation are reduced to the same

physical units.

A convenient computational procedure for evaluating

electric- and magnetic-field distributions in and around the

dielectric resonator is described in the second section. It is

shown that the components of the modal field vectors can

be computed using a slight modification of the existing

algorithm for computation of the matrix elements in the

method-of-moments procedure.

In the last part of the paper, the computed field distri-

butions for various resonant modes are graphically dis-

played. A detailed knowledge of the orientation of the

electric and the magnetic field around the resonator should

be very useful in designing the coupling circuits for particu-

lar modes, as well as in designing the traps for undesirable

modes. Only the field distributions of the rotationally

symmetric TEOla and TM018 modes have been previously

shown in the literature on dielectric resonators [7], [8].

II. MATRIX NORMALIZATION

The two coupled integral equations which serve as a

starting point in the solution procedure utilized here are

obtained from the boundary condition that both the

tangential electric and the tangential magnetic fields are

continuous at the surface of the dielectric resonator. When

the unknown equivalent surface currents are expanded in

pulse basis functions and the integral equations are tested

in the manner described in [1], a matrix equation of the

following form is obtained:

II*)

IJJ

IK,)

P%)

—— . (1)

Subscripts @ and t in (1) denote vector components in the

azimuthal direction and in the direction along the gener-

ating curve for the body of revolution, respectively. Fig. 1

illustrates the orientation of the components of equivalent

electric surf ace currents J1 and J+ on various parts of the

dielectric resonator of cylindrical shape.

The integrals appearing in the evaluation of elements of

the moment matrix are simplified if one multiplies the ~

and Mt components of the unknown equivalent currents

by the factor 2np, where p is the radial distance to the

current source in a cylindrical system of coordinates, and

then treats this product as the unknown quantity in the

equation. By doing this, the physical dimension of these

two variables is changed from current density to current.

Thus, the t-components of the electric and magnetic cur-

rents appearing in (1) are denoted It and Kr. The column

!T
Jt

J+

J+

J+ -1

a
k

Fig. L Orientation of equivalent currents on surface of dielectric reso-
nator.

vector of the unknown equivalent currents (and current

densities) is partitioned in four column vectors Ilt), IJO),

lKt), and Pf+).
The homogeneous solution of the matrix equation (1)

yields the numerical values of the natural frequencies on

the complex plane which belong to various resonant modes.

However, when the number of points N is gradually in-

creased in order to study the numerical convergence of the

method, one may encounter numerical instabilities in com-

puting the equivalent currents of some resonant modes.

This indicates that the matrix in (1) becomes ill-condi-

tioned for large N.

The reason for the ill-conditioning can be traced to the

fact that the individual components of both column vectors

appearing in (1) are expressed in mixed physical units. For

instance, lr is given in amperes, J@ in amperes per meter,

K, in volts, and M@ in volts per meter. In order to correct

this situation, If and J+ are both multiplied by the intrinsic

impedance q, of the dielectric material

120’n’qr=—

6“

(2)

In addition, It is divided by 2wa, the circumference of the

resonator. The new normalized column vectors, denoted by

primed symbols, are then

IJ,’) = &t)

IJJ) = TrlJ+)-

We note that the new vector IJ,’)

density, but it is not the actual equivalent surface current

density because of the factor p/a. The vector IM+) is left

unchanged, and the vector ]Kt ) is normalized by dividing

by 2wa

(3)

(4)

has units of current

P-G’)= +-#). (5)

The new primed symbols are now all expressed in the same

physical units, namely volts/meter. This change of vari-

ables requires that the corresponding parts of the parti-

tioned matrix in (1) be divided (or multiplied) by the same
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Fig. 2. Matrix areas affected by normalization: (a) division by q,, (b)
multiplication by 2 na, and (c) multiplication by q..

factors. Therefore, the first two block-columns of the ma-

trix must be divided by q, as indicated in Fig. 2(a). The

first and thethird block-columns must also be multiplied

by 2~a as indicated in Fig. 2(b).

To bring the right-hand side of (I)tothe same physical

units, all the magnetic-field quantities are multiplied with

the free-space intrinsic impedance qo. Consequently, the

third and the fourth block-rows of the matrix must be

multiplied bythesame factor as shown in Fig. 2(c).

The condition number based on the infinite norm [2] has

been computed before and after the normalization indi-

cated above. For the mode HEMIZ$ with 27 points on the

body (resulting in a 102 x102 matrix), the matrix condition

number was reduced by a factor 106. The dielectric reso-

nator dimensions are a = 5.25 mm and h = 4.6 mm, and

the relative dielectric constant is t,= 38.

The effect of bringing all the elements of the current

vector to the same units can be seen in Fig. 3. In this

figure, the values of the individual currents are plotted in

order of appearance in the column vector. There are a total

of 102 current values plotted. In Fig. 3(a), the equivalent

currents computed without matrix normalization are

plotted, and in Fig. 3(b), the currents computed with

normalization are plotted. One can clearly see that the

unnormalized currents are so dissimilar in magnitude that,

for instance, the equivalent current Z, is not even visible in

the illustration. After ,normalization, all the equivalent

current densities are of the same order of magnitude, as

can be seen in Fig. 3(b).

III. COMPUTATION OF FIELDS

Once a resonant frequency of the dielectric resonator has

been determined, the modal equivalent surface currents

can be computed from (1) within a multiplicative constant.

A convenient numerical procedure for doing this is Gaus-

sian elimination. The resulting electric and magnetic equiv-

alent surface currents on the elementary “bands” on the

resonator surface can be utilized to compute the electric

and magnetic fields everywhere in space. However, the

vector summation of the field contributions for various

observation points inside and around the resonator re-

quires a considerable additional programming effort. This

work can be circumvented by utilizing the information

already available in the subroutine which computes the

elements of the matrix on the left-hand side of (l).

A convenient procedure can be developed for computing

the fields if one notes that the surface integral equation

approach comprises a difference of the two fields of inter-

est at the resonator surface since the equations are of the

+’+-’=+’+-”’$+
(a)

$.

t-J-t-JPt-”+t--”’H
(b)

Fig. 3. Magnitude of modal equivalent currents for HEM12$ mode: (a)
for unnormalized matriz, and (b) for normalized matrix.

form

[ES(.I, M)- E(- J, -M)]tm=E:: (6)

[HS(J, M)- H(- J, -kf)]tw=H& (7)

where (E’, H’) and (E, H) are the fields evaluated just

outside and just inside the resonator surface, respectively.

In particular, a single element of the moment matrix repre-

sents the difference in two field components at some point

in space due to two different unit current sources (e.g.,

from basis functions for J and – J) located at another

poirit in space, but which radiate in different homogeneous

media. The two radiated fields appearing in (6) and (7) are

computed individually, and hence the correct field in either

region can be computed by retaining only the appropriate

terms in the moment-matrix calculation. This is easily

accomplished by retaining only the set of potentials where

the medium parameters are those of the medium in which

the field is desired.

To compute the fields, therefore, we first specify the

generating arc for a phantom surface on which we wish to
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‘iii—

1 1 1 I 1

Fig. 4. Solid line: electric field versus radiat distance, isolated resonator,
mode TEOIJ. Broken line: dielectric rod resonator TEOII between

parallel magnetic watls. Dimensions: a = 5.25 mm, !-I= 4.6 mm; dielec-

tric constant: c,= 38.

know the tangential fields. The fields tangential to this

surface due to unit sources on the resonator surface are

next computed using a modified version of the moment-

matrix routine which includes only the potentials involving

the Green’s function of the medium in which the field is to

be evaluated. The resulting matrix ii multiplied by the

previously computed modal current solution to obtain the

tangential fields on the generating arc of the phantom

surface. The fields so computed are actually weighted

averages, since (6) and (7) were” tested” as described in [1]

to obtain expressions for the moment-matrix elements. The

appropriate values for the fields are easily obtained, how-

ever, by dividing by the length of the phantom surface

subdomain at the observation point. Fields anywhere on

the phantom surface are obtained by including the ap-

propriate cos(m+) or sin(nz$) behavior, where m is the

azimuthal mode number.

For the mode TE018, field distributions obtained via this

procedure have been compared with the theoretical distri-

bution for a dielectric-rod waveguide for which the solu-

tion is available in terms of Bessel functions [9]. One

observes in Fig. 4 that the agreement is quite good inside

the resonator. The field of the isolated resonator, however,

decays more slowly than does the field for a resonant

section of the dielectric-rod waveguide terminated by two

parallel magnetic walls. This behavior is to be expected

since the magnetic walls form a cutoff waveguide in the

radial direction (see, e.g., [10, fig. 5]).

IV. CATALOG OF FIELD PATTERNS

In this section, we present a catalog of electric- and

magnetic-field patterns for several low-order resonant

modes in isolated dielectric resonators. The computed vec-

tor field F (electric or magnetic field) for a particular mode

is an exponentially decaying oscillation. Even if the decay-

ing nature of the field is ignored, it is difficult to graphi-

cally represent the spatial distribution of the magnitude

and the phase of F. Therefore, we display the instanta-

TABLE I

RESONANT FREQUENCIES AND Q FACTORS OF THE FIVE LOWEST
MODES

Mode f (GHz)
res Q

m
01 &

4.S29 45. s

~ol 6
7.524 76.8

‘%16
6.333 30,7

HEM
126

6.638 52.1

7.752 327.1
‘“21 6

neous values of the vector

Re(Fe@””P~)

at several instants of time, like

a ~,npt = O, ~, ~, etc.

In the above, we use tiW.P to represent only the imaginary

part of the complex natural frequency of the mode

(nz, n, p). A computer-generated graphical display is used

to show the field orientation at equidistant points as well

as to provide some relative amplitude information. The

plane containing the z axis (axis of rotation) is referred to

as the meridian plane, and the plane perpendicular to it,

passing through the center of the resonator, is referred to

as the equatorial plane. All the plots are computed for a

resonator having the dimensions a = 5.25 mm and h = 4.6

mm, and which is made of material with c,= 38. The

resonant frequencies and the Q factors (due to radiation)

are listed in Table I. When compared with the results

presented in [1], it is noticed that the resonant frequencies

are almost identical, but some of the Q factors differ by as

much as 12 percent. The results presented here for the Q

factors are believed to be more accurate than those in [1]

because a larger number of points has been utilized to

model the generating arc of the resonator.

Fig. 5 shows the electric field of the mode TE018 in the

equatorial plane at the moment a~HP t = O. In this and in

subsequent illustrations, double arrows indicate the area

within which the field is less than 3 dB below the maxi-

mum, while the longer lines indicate a level between 3 and

10 dB below the maximum, and the shorter lines indicate a

level between 10 and 20 dB below the maximum. When the

transverse field is more than 20 dB below the maximum

value of the field, the points are left blank. The magnetic

field of the mode TE013 in the meridian plane is shown in

Fig. 6. The magnetic field is perpendicular to the field

shown in Fig. 5, and its maximum occurs one-quarter

period later in time. In general, all the magnetic-field

patterns are in time quadrature with all the electric-field

patterns. Therefore, this fact will not be further indicated

in the remaining illustrations.

The magnetic and electric field of the TM018 mode can

be seen in Figs. 7 and 8 in the equatorial and meridian

planes, respectively. The magnetic field of this mode is well
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Fig. 6. TE018 mode, H-field inmeridian plane, ~t=r/2,

contained within the resonator, whereas the outside electric

field is relatively strong near the top and bottom faces of

the resonator. If strong coupling to an external circuit is

desired, a short capacitive probe, directed along theaxisof

rotation, should be well-suited for couplingto this mode.

The remaining three resonant modes displayed here are

hybrid electromagnetic modes (HEM) [10] With respect to

the axis of rotation. Each of these modes has a degeneracy

in the sense that, as a function of the angle +, it can

acquire either a cos(m+) or a sin(m+) dependence. For

this reason, the angular reference +=0 is indicated to

specify the orientation of various field patterns with re-

spect to each other.

The hybrid mode with the lowest resonant frequency is

HEMlla shown in Figs. 9 through 12. As mentioned in [1],

it was not possible to observe this mode experimentally in

the free-space simulated environment. Table I shows that

the Q factor of this mode is, lowest of all the modes, which

makes it very difficult to achieve sufficient coupling to the

coaxial cable leading to the observation instrument. This

mode has been recently utilized by Long et al. [11] in the

so-called resonant cylindrical dielectric cavity antenna.

H

Fig. 7. TM018 mode, H-field in equatorial plane,
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Fig. 8. TM018 mode, E-field in meridian plane.
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Fig. 9. ‘ HEM118 mode, H-field in equatorial plane
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Fig. 10. HEMIIO mode, E-field in plane parallel to and offset from

equatorial plane by 2.15 mm.
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Fig. 12. HEMl10 mode, H-fieldinmeridianplane@=w/2.

The magnetic field in the equatorial plane can be seen in

Fig. 9. The corresponding equatorial plane componentsof

the electric field are zero, notwithstanding the time quadra-

ture. This occurs because the E-field pattern has an odd

symmetry with respect to the equatorial plane. Thus, the

E-field shown in Fig. 10 has been computed in a plane

parallel with the equatorial plane, but displaced by a

distance 2.15 mm from the center (close to the resonator
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Fig. 13. HEM128 mode, E-field inequatorial plane.
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Fig. 14. HEMIz~ mode, E-field in meridian plane +=0.
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Fig. 15. HEM12& mode, H-field inmendianplane +=r/2.

face, but still inside the resonator). The meridian plane

which contains the maximum electric-field intensity is the

@= O plane (Fig. 11), whereas the maximum magnetic-field
intensity occurs in the meridian plane @=7r/2 (Fig. 12).

Note that the magnetic field is very weak outside each

resonator face, while the electric field is strongest there.

This property should be kept in mind while designing a

coupling device for this mode.
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Fig. 17. HEM216 mode, E-field inplane paralel toandoffset from the

equatorial plane by 2.15 mm.

Figs. 13 through 15 depict themode HEM128, which has

a resonant frequency only 5 percent higher than the mode

HEM118 (see Table I), Fig. 13 depicts theelectric field in

the equatorial plane. In Fig. 14, which shows the E-field in

the meridian plane, one notices the strong localized field at

the four corners of the resonator. One can expect that,

when the resonator is placed face down on a microstrip

substrate, this mode will be strongly coupled to the adja-

cent microstrip line through the electric-field action (capa-

citive coupling). The magnetic field for this mode in the

meridian plane + = 7r/2 is shown in Fig. 15.

The last four illustrations (Figs. 16 through 19) show the

resonant mode HEMZ18. This mode has its resonant

frequency close to the resonance of the TM018 mode, and if

the TMOl~ is the desired mode of operation, HEMZ18

creates a spurious resonance nearby. From Table I one can

see that, in the example chosen, the resonant frequencies of

HEM218
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Fig. 18. HEMJM mode, H-field in meridian plane + = m/4.
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Fig. 19. HEM21$ mode, E-field in meridian plane o = O.

these two modes differ by only 3 percent. Therefore, the

field pattern of the HEM~la m~de is mainly of interest for

the purpose of designing an effective mode suppressor. The

H-field pattern in the equatorial plane shows an octupole

character, consisting of two linear quadruples rotated by

7r/2 with respect to each other. The octupole is an ineffi-

cient radiator, and consequently, the Q factor of this mode

is much higher than of any other mode listed in Table I.

The electric-field distribution again has an odd symmetry

about the equatorial plane. Therefore, the E-field in Fig. 17

is shown close to the surface of the resonator because, at

the equatorial plane, the transverse E-field is zero. The

H-field in the meridian plane is maximum at + = 45°. Fig.

18 shows that the magnetic field is strongest near the

equator. The E-field in the meridian plane rp = O is shown

in Fig. 19.

V. CONCLUSIONS

The numerical solution of the integral equation for di-

electric bodies of revolution provides quantitative and

qualitative data of great value for the practical design of

dielectric resonators. The circularly symmetric resonant

modes (m = O) are classified as TE0.8 and TMO.O. The

other resonant modes (m > 1) are all of the hybrid nature,

denoted HEI’d~.a. The resonant frequencies of various

modes are sometimes located very closely together. In

order to design the coupling circuits which will enhance the

desired resonant mode and suppress the undesirable ones,
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a detailed knowledge of the field distribution in the space .. . ~

around the resonator is reqttired. It is hoped that the --~

catalog of the field patterns for the five lowest resonant ... ~~~y ~.1
modes which are presented here will provide users of ,~,

dielectric resonators with this much needed information.
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