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Computed Modal Field Distributions for
Isolated D1electnc Resonators
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AND JOSEPH JAMES, STUDENT MEMBER, IEEE

Abstract —Flectric- and magnetic-field patterns for five of the lowest
resonant modes in cylindrical dielectric resonators are displayed in various
planes of intersection. The computational procedure is based on a method-
of-moments solution of the surface integral equation for bodies of revolu:
tion. Improvement of the numerical stability through the normalization of
the matrix is discussed, and an algorithm for the evaluation of the modal
field components is described.

I. INTRODUCTION

HE resonant frequencies and the Q factors of various

. modes in isolated dielectric resonators can be accu-
rately computed by using the- surface integral equation
formulation for bodies of revolution as described in [1]. In
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this paper, we present results for the computed field distri-
butions of several modes of an isolated resonator which
were obtained by applying this formulation. In the first
section of the paper, a normalization procedure used in [1}
is described. Numerical implementation of the integral
equation approach may,lead to numerical instabilities when
higher order modes are studied if the moment matrix is not
adequately normalized. It is shown that a straightforward
normalization can significantly improve the condition
number of the matrix [2], and consequently remove or
reduce the numérical difficulties.
~ Traditional applications of the method of moments to
problems involving perfectly conducting bodies have been
either an E-field or an H-field integral equation [3], {4]. In
either case, all the components of the unknown column
vector are .automatically expressed in the same physical
units for most structures so that the normalization of the.
matrix is not an issue. The integral equation utilized here,
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however, is of the combined-field type [5], [6], in which
both the electric and the magnetic equivalent currents
appear as unknowns. In such situations, and when differ-
ent types of basis functions are used for different compo-
nents of current, the matrix should be normalized in such a
way that all the components of the column vectors on both
sides of the matrix equation are reduced to the same
physical units.

A convenient computational procedure for evaluating
electric- and magnetic-field distributions in and around the
dielectric resonator is described in the second section. It is
shown that the components of the modal field vectors can
be computed using a slight modification of the existing
algorithm for computation of the matrix elements in the
method-of-moments procedure.

In the last part of the paper, the computed field distri-
butions for various resonant modes are graphically dis-
played. A detailed knowledge of the orientation of the
electric and the magnetic field around the resonator should
be very useful in designing the coupling circuits for particu-
lar modes, as well as in designing the traps for undesirable
modes. Only the field distributions of the rotationally
symmetric TEg; and TM;; modes have been previously
shown in the literature on dielectric resonators [7], [8].

II. MATRIX NORMALIZATION

The two coupled integral equations which serve as a
starting point in the solution procedure utilized here are
obtained from the boundary condition that both the
tangential electric and the tangential magnetic fields are
continuous at the surface of the dielectric resonator. When
the unknown equivalent surface currents are expanded in
pulse basis functions and the integral equations are tested
in the manner described in [1], 2 matrix equation of the
following form is obtained:

Ze  Zi Tu T |[UD |E[)
Zoo Zog L L[V |_|1ED |
L, Lo Yo Yol|lKD |H,)
L L Yoo Yo 1My |H£>

Subscripts ¢ and ¢ in (1) denote vector components in the
azimuthal direction and in the direction along the gener-
ating curve for the body of revolution, respectively. Fig. 1
illustrates the orientation of the components of equivalent
electric surface currents J, and J, on various parts of the
dielectric resonator of cylindrical shape.

The integrals appearing in the evaluation of elements of
the moment matrix are simplified if one multiplies the J,
and M, components of the unknown equivalent currents
by the factor 27p, where p is the radial distance to the
current source in a cylindrical system of coordinates, and
then treats this product as the unknown quantity in the
equation. By doing this, the physical dimension of these
two variables is changed from current density to current.
Thus, the z~components of the electric and magnetic cur-
rents appearing in (1) are denoted I, and K,. The column
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Fig. 1. Orientation of equivalent currents on surface of dielectric reso-

nator.

vector of the unknown equivalent currents (and current
densities) is partitioned in four column vectors |I,), |J,),
IK,), and [M,). |

The homogeneous solution of the matrix equation (1)
yields the numerical values of the natural frequencies on
the complex plane which belong to various resonant modes.
However, when the number of points N is gradually in-
creased in order to study the numerical convergence of the
method, one may encounter numerical instabilities in com-
puting the equivalent currents of some resonant modes.
This indicates that the matrix in (1) becomes ill-condi-
tioned for large N.

The reason for the ill-conditioning can be traced to the
fact that the individual components of both column vectors
appearing in (1) are expressed in mixed physical units. For
instance, 7, is given in amperes, J, in amperes per meter,
K, in volts, and M, in volts per meter. In order to correct
this situation, I, and J, are both multiplied by the intrinsic
impedance 7, of the dielectric material

1207
nr = .
Je,
In addition, I, is divided by 27a, the circumference of the

resonator. The new normalized column vectors, denoted by
primed symbols, are then

> = 3|,y (3)

D =mnlJy)- (4)

We note that the new vector |J,) has units of current
density, but it is not the actual equivalent surface current
density because of the factor p/a. The vector [M,) is left
unchanged, and the vector |K,} is normalized by dividing
by 27a

@)

1

IM/) = 27wa

1K, (5)
The new primed symbols are now all expressed in the same
physical units, namely volts/meter. This change of vari-
ables requires that the corresponding parts of the parti-

tioned matrix in (1) be divided (or multiplied) by the same



KAJFEZ et al.: COMPUTED MODAL FIELD DISTRIBUTIONS FOR RESONATORS

00 BOEQ 0000
ppaad0 8080 ol

00 8080 NNNN
ppulld BUE0 XNRRNN

(@ (b) ©

Fig. 2. Matrix areas affected by normalization: (a) division by 1,, (b)
multiplication by 27a, and (¢) multiplication by 7.

factors. Therefore, the first two block-columns of the ma-
trix must be divided by 7, as indicated in Fig. 2(a). The
first and the third block-columns must also be multiplied
by 27a as indicated in Fig. 2(b).

To bring the right-hand side of (1) to the same physical
units, all the magnetic-field quantities are multiplied with
the free-space intrinsic impedance n,. Consequently, the
third and the fourth block-rows of the matrix must be
multiplied by the same factor as shown in Fig. 2(c).

The condition number based on the infinite norm [2] has
been computed before and after the normalization indi-
cated above. For the mode HEM,,; with 27 points on the
body (resulting in a 102 X 102 matrix), the matrix condition
number was reduced by a factor 10°. The dielectric reso-
nator dimensions are a =5.25 mm and A4 =4.6 mm, and
the relative dielectric constant is €, = 38.

The effect of bringing all the elements of the current
vector to the same units can be seen in Fig. 3. In this
figure, the values of the individual currents are plotted in
order of appearance in the column vector. There are a total
of 102 current values plotted. In Fig. 3(a), the equivalent
currents computed without matrix normalization are
plotted, and in Fig. 3(b), the currents computed with
normalization are plotted. One can clearly see that the
unnormalized currents are so dissimilar in magnitude that,
for instance, the equivalent current I, is not even visible in
the illustration. After normalization, all the equivalent
current densities are of the same order of magnitude, as
can be seen in Fig. 3(b).

II1. CoMPUTATION OF FIELDS

Once a resonant frequency of the dielectric resonator has
been determined, the modal equivalent surface currents
can be computed from (1) within a multiplicative constant.
A convenient numerical procedure for doing this is Gaus-
sian elimination. The resulting electric and magnetic equiv-
alent surface currents on the elementary “bands” on the
resonator surface can be utilized to compute the electric
and magnetic fields everywhere in space. However, the
vector summation of the field contributions for various
observation points inside and around the resonator re-
quires a considerable additional programming effort. This
work can be circumvented by utilizing the information
already available in the subroutine which computes the
elements of the matrix on the left-hand side of (1).

A convenient procedure can be developed for computing
the fields if one notes that the surface integral equation
approach comprises a difference of the two fields of inter-
est at the resonator surface since the equations are of the
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for unnormalized matrix, and (b) for normalized matrix.
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form
[E*(J,M)~E(=J,~M)]wm=Eg; (6)
[HS(J,M)—H(—J,-—M)]tanth;‘f (7)

where (E°, H*) and (E, H) are the fields evaluated just
outside and just inside the resonator surface, respectively.
In particular, a single element of the moment matrix repre-
sents the difference in two field components at some point
in space due to two different unit current sources (e.g.,
from basis functions for J and — J) located at another
poirit in space, but which radiate in different homogeneous
media. The two radiated fields appearing in (6) and (7) are
computed individually, and hence the correct field in either
region can be computed by retaining only the appropriate
terms in the moment-matrix calculation. This is easily
accomplished by retaining only the set of potentials where
the medium parameters are those of the medium in which
the field is desired.

To compute the fields, therefore, we first specify the
generating arc for a phantom surface on which we wish to
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Fig. 4. Solid line: electric field versus radial distance, isolated resonator,
mode TE, ;. Broken line: dielectric rod resonator TEg; between
parallel magnetic walls. Dimensions: a = 5.25 mm, 4 = 4.6 mm; dielec-
tric constant: €, = 38.

know the tangential fields. The fields tangential to this
surface due to unit sources on the resonator surface are
next computed using a modified version of the moment-
matrix routine which includes only the potentials involving
the Green’s function of the medium in which the field is to
be evaluated. The resulting matrix is multiplied by the
previously computed modal current solution to obtain the
tangential fields on the generating arc of the phantom
surface. The fields so computed are actually weighted
averages, since (6) and (7) were “tested” as described in [1]
to obtain expressions for the moment-matrix elements. The
appropriate values for the fields are easily obtained, how-
ever, by dividing by the length of the phantom surface
subdomain at the observation point. Fields anywhere on
the phantom surface are obtained by including the ap-
propriate cos(m¢) or sin(m¢) behavior, where m is the
azimuthal mode number.

For the mode TE,;, field distributions obtained via this
procedure have been compared with the theoretical distri-
bution for a dielectric-rod waveguide for which the solu-
tion is available in terms of Bessel functions [9]. One
observes in Fig. 4 that the agreement is quite good inside
the resonator. The field of the isolated resonator, however,
decays more slowly than does the field for a resonant
section of the dielectric-rod waveguide terminated by two
parallel magnetic walls. This behavior is to be expected
since the magnetic walls form a cutoff waveguide in the
radial direction (see, e.g., [10, fig. 5]).

1V. CATALOG OF FIELD PATTERNS

In this section, we present a catalog of electric- and
magnetic-field patterns for several low-order resonant
modes in isolated dielectric resonators. The computed vec-
tor field F (electric or magnetic field) for a particular mode
is an exponentially decaying oscillation. Even if the decay-
ing nature of the field is ignored, it is difficult to graphi-
cally represent the spatial distribution of the magnitude
and the phase of F. Therefore, we display the instanta-
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TABLE I
RESONANT FREQUENCIES AND Q FACTORS OF THE FIVE LOWEST
MODES
Mode £ (GHz) Q
res
Ty, 4.829 45.8
‘I'MOl s 7.524 76.8
HEM, ) 6.333 30.7
HEM125 6.638 52.1
HEM, 7.752 327.1

neous values of the vector
Re( Fe/omn)
at several instants of time, like
w =02 T etc.

mnp 7472’

In the above, we use w,,,, to represent only the imaginary
part of the complex natural frequency of the mode
(m, n, p). A computer-generated graphical display is used
to show the field orientation at equidistant points as well
as to provide some relative amplitude information. The
plane containing the z axis (axis of rotation) is referred to
as the meridian plane, and the plane perpendicular to it,
passing through the center of the resonator, is referred to
as the equatorial plane. All the plots are computed for a
resonator having the dimensions ¢ = 5.25 mm and # = 4.6
mm, and which is made of material with ¢, =38. The
resonant frequencies and the Q factors (due to radiation)
are listed in Table I. When compared with the results
presented in [1], it is noticed that the resonant frequencies
are almost identical, but some of the Q factors differ by as
much as 12 percent. The results presented here for the Q
factors are believed to be more accurate than those in [1]
because a larger number of points has been utilized to
model the generating arc of the resonator.

Fig. 5 shows the electric field of the mode TE;; in the
equatorial plane at the moment w,,,,=0. In this and in
subsequent illustrations, double arrows indicate the area
within which the field is less than 3 dB below the maxi-
mum, while the longer lines indicate a level between 3 and
10 dB below the maximum, and the shorter lines indicate a
level between 10 and 20 dB below the maximum. When the
transverse field is more than 20 dB below the maximum
value of the field, the points are left blank. The magnetic
field of the mode TE;; in the meridian plane is shown in
Fig. 6. The magnetic field is perpendicular to the field
shown in Fig. 5, and its maximum occurs one-quarter
period later in time. In general, all the magnetic-field
patterns are in time quadrature with all the electric-field
patterns. Therefore, this fact will not be further indicated
in the remaining illustrations.

The magnetic and electric field of the TM,; mode can
be seen in Figs. 7 and 8 in the equatorial and meridian
planes, respectively. The magnetic field of this mode is well
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4
4

Fig. 8. TMg;; mode, E-field in meridian plane.

contained within the resonator, whereas the outside electric
field is relatively strong near the top and bottom faces of
the resonator. If strong coupling to an external circuit is
desired, a short capacitive probe, directed along the axis of
rotation, should be well-suited for coupling to this mode. HEM ‘ H

The remaining three resonant modes displayed here are
hybrid electromagnetic modes (HEM) [10] with respect to
the axis of rotation. Each of these modes has a degeneracy
in the sense that, as a function of the angle ¢, it can
acquire either a cos(m¢) or a sin(m¢) dependence. For
this reason, the angular reference ¢ =0 is indicated to
specify the orientation of various field patterns with re-
spect to each other.

The hybrid mode with the lowest resonant frequency is
HEM,;; shown in Figs. 9 through 12. As mentioned in [1],
it was not possible to observe this mode experimentally in
the free-space simulated environment. Table 1 shows that
the Q factor of this mode is lowest of all the modes, which
makes it very difficult to achieve sufficient coupling to the
coaxial cable leading to the observation instrument. This
mode has been recently utilized by Long er al. [11] in the
so-called resonant cylindrical dielectric cavity antenna. Fig. 9. ' HEM,,; mode, H-field in equatorial plane.
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HEM,,; mode, E-field in meridian plane ¢
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Fig. 12. HEM,,; mode, H-field in meridian plane ¢ = 7/2.

The magnetic field in the equatorial plane can be seen in
Fig. 9. The corresponding equatorial plane components of
the electric field are zero, notwithstanding the time quadra-
ture. This occurs because the E-field pattern has an odd
symmetry with respect to the equatorial plane. Thus, the
E-field shown in Fig. 10 has been computed in a plane
parallel with the equatorial plane, but displaced by a
distance 2.15 mm from the center (close to the resonator
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Fig. 14. HEM,,; mode, E-field in meridian plane ¢ = 0.
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Fig. 15. HEM,,,; mode, H-field in meridian plane ¢ = 7/2.
face, but still inside the resonator). The meridian plane
which contains the maximum electric-field intensity is the
¢ = 0 plane (Fig. 11), whereas the maximum magnetic-field
intensity occurs in the meridian plane ¢ = w/2 (Fig. 12).
Note that the magnetic field is very weak outside each
resonator face, while the electric field is strongest there.
This property should be kept in mind while designing a
coupling device for this mode.
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Fig. 16. HEM,,; mode, H-field in equatorial plane.
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equatorial plane by 2.15 mm.

Figs. 13 through 15 depict the mode HEM,,;, which has
a resonant frequency only 5 percent higher than the mode
HEM,;; (see Table I). Fig. 13 depicts the electric field in
the equatorial plane. In Fig. 14, which shows the E-field in
the meridian plane, one notices the strong localized field at
the four corners of the resonator. One can expect that,
when the resonator is placed face down on a microstrip
substrate, this mode will be strongly coupled to the adja-
cent microstrip line through the electric-field action (capa-
citive coupling). The magnetic field for this mode in the
meridian plane ¢ = 7/2 is shown in Fig. 15.

The last four illustrations (Figs. 16 through 19) show the
resonant mode HEM,,;. This mode has its resonant
frequency close to the resonance of the TM ;5 mode, and if
the TM,; is the desired mode of operation, HEM,;
creates a spurious resonance nearby. From Table I one can
see that, in the example chosen, the resonant frequencies of
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Fig. 19. HEM,,; mode, E-field in meridian plane ¢ = 0.

these two modes differ by only 3 percent. Therefore, the
field pattern of the HEM,,; mode is mainly of interest for
the purpose of designing an effective mode suppressor. The
H-field pattern in the equatorial plane shows an octupole
character, consisting of two linear quadrupoles rotated by
w/2 with respect to each other. The octupole is an ineffi-
cient radiator, and consequently, the Q factor of this mode
is much higher than of any other mode listed in Table 1.
The electric-field distribution again has an odd symmetry
about the equatorial plane. Therefore, the E-field in Fig. 17
is shown close to the surface of the resonator because, at
the equatorial plane, the transverse E-field is zero. The
H-field in the meridian plane is maximum at ¢ = 45°, Fig,
18 shows that the magnetic field is strongest near the
equator. The E-field in the meridian plane ¢ = 0 is shown
in Fig. 19.

V. CONCLUSIONS

The numerical solution of the integral equation for di-
electric bodies of revolution provides quantitative and
qualitative data of great value for the practical design of
dielectric resonators. The circularly symmetric resonant
modes (m = 0) are classified as TE,,; and TM,,;. The
other resonant modes (m >1) are all of the hybrid nature,
denoted HEM,, ;. The resonant frequencies of various
modes are sometimes located very closely together. In
order to design the coupling circuits which will enhance the
desired resonant mode and suppress the undesirable ones,
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a detailed knowledge of the field distribution in the space
around the resonator is required. It is hoped that the
catalog of the field patterns for the five lowest resonant
modes which are presented here will provide users of
dielectric resonators with this much needed information.
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